Backward difference formulae: New multipliers and stability properties for parabolic equations
نویسندگان
چکیده
We determine new, more favourable, and in a sense optimal, multipliers for the threeand five-step backward difference formula (BDF) methods. We apply the new multipliers to establish stability of these methods as well as of their implicit–explicit counterparts for parabolic equations by energy techniques, under milder conditions than the ones recently imposed in [4, 1].
منابع مشابه
Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations
Quasi-linear parabolic equations are discretised in time by fully implicit backward difference formulae (BDF) as well as by implicit–explicit and linearly implicit BDF methods up to order 5. Under appropriate stability conditions for the various methods considered, we establish optimal order a priori error bounds by energy estimates, which become applicable via the Nevanlinna-Odeh multiplier te...
متن کاملStability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations
We analyze stability properties of BDF methods of order up to 5 for linear parabolic equations as well as of implicit–explicit BDF methods for nonlinear parabolic equations by energy techniques; time dependent norms play also a key role in the analysis.
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملLong Time Behavior of Backward Difference Type Methods for Parabolic Equations with Memory in Banach Space
We show stability in a Banach space framework of backward Euler and second order backward diierence timestepping methods for a parabolic equation with memory. The results are applied to derive maximum norm stability estimates for piecewise linear nite element approximations in a plane spatial domain, which is accomplished by a new resolvent estimate for the discrete Laplacian. Error estimates a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 85 شماره
صفحات -
تاریخ انتشار 2016